The relation between finite differences in time and the Chebyshev polynomial recursion

Reynam Pestana ${ }^{1}$, Paul Stoffa ${ }^{2}$ and Adriano Santos ${ }^{3}$

${ }^{1}$ CPGG/UFBA and INCT-GP/CNPq, Salvador, Bahia, Brazil
${ }^{2}$ UT Austin, Texas, USA.
${ }^{3}$ INCT-GP/CNPq, Salvador, Bahia, Brazil

82nd Annual Meeting SEG
4-9 November 2012
Las Vegas, Nevada USA

Motivation

Pestana and Stoffa, 2010, Time evolution of wave equation using rapid expansion method (REM), Geophysics, vol. 75 no. 4.

Remarks:

- Numerical implementation of the Chebyshev polynomial recursion have shown wavelike character results;
- We have shown that the REM reduces to the same equations used for the second-order finite-difference time approximation (asymptotic approximation for the Bessel function).

Chebyshev polynomials

Q_{200} (top left); Q_{400} (top right); Q_{600} (bottom left); Q_{800} (bottom right)

Snapshots computed by REM

Snapshosts at: 1.0 s (top left); 1.2 s (top right); 1.4 s (bottom left); 1.6 s (bottom right)

Acoustic wave equation

$$
\begin{equation*}
\frac{\partial^{2} P(\mathbf{x}, t)}{\partial t^{2}}=-L^{2} P(\mathbf{x}, t) \tag{1}
\end{equation*}
$$

with $-L^{2}=c^{2}(\mathbf{x}) \nabla^{2}$
Formal solution of equation 1, with the initial condition

$$
\begin{gather*}
\left\{\begin{array}{l}
\left.\frac{\partial P(\mathbf{x}, t)}{\partial t}\right|_{t=0}=\dot{P}_{0} \\
P(\mathbf{x}, t=0)=P_{0}
\end{array}\right. \\
P(\mathbf{x}, t)=\cos (L t) P_{0}+L^{-1} \sin (L t) \dot{P}_{0} \tag{2}
\end{gather*}
$$

One-step solution by REM

$$
\begin{equation*}
P(\mathbf{x}, t)+P(\mathbf{x},-t)=2 \cos (L t) P_{0} \tag{3}
\end{equation*}
$$

The rapid expansion method (REM)

The cosine function is given by (Kosloff et. al, 1989)

$$
\begin{equation*}
\cos (L t)=\sum_{k=0}^{M} C_{2 k} J_{2 k}(R t) Q_{2 k}\left(\frac{i L}{R}\right) \tag{4}
\end{equation*}
$$

where $R=\pi c_{\max } \sqrt{\left(\frac{1}{\Delta x}\right)^{2}+\left(\frac{1}{\Delta z}\right)^{2}}$ and $M>R t($ Tal-Ezer, 1987).
Chebyshev polynomials recursion is given by:

$$
Q_{k+2}(x)=\left(4 x^{2}+2\right) Q_{k}(x)-Q_{k-2}(x)
$$

with the initial values:

$$
\left\{\begin{array}{l}
Q_{0}(x)=1 \\
Q_{2}(x)=1+2 x^{2}
\end{array}\right.
$$

REM - recursive solution

Using the wave equation solution we have:

$$
\begin{equation*}
P(t+\Delta t)+P(t-\Delta t)=2 \cos (L \Delta t) P(t) \tag{5}
\end{equation*}
$$

Taking the Taylor series expansion of $\cos (L \Delta t)$.

$$
\begin{cases}\left(1-\frac{(L \Delta t)^{2}}{2}\right) & - \text { Second order } \\ \left(1-\frac{(L \Delta t)^{2}}{2}+\frac{(L \Delta t)^{4}}{24}\right) & - \text { Fourth order }\end{cases}
$$

We obtain the standard finite-difference schemes:

$$
\begin{equation*}
\frac{P(t+\Delta t)-2 P(t)+P(t-\Delta t)}{\Delta t^{2}}=c^{2} \nabla^{2} P(t) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{P(t+\Delta t)-2 P(t)+P(t-\Delta t)}{\Delta t^{2}}=\left(c^{2} \nabla^{2}+\frac{c^{4} \Delta t^{2}}{12} \nabla^{4}\right) P(t) \tag{7}
\end{equation*}
$$

Finite difference solution - special case of REM

Using the REM approximation, the wave equation solution is given by:

$$
\begin{equation*}
P(t+\Delta t)+P(t-\Delta t)=2 \sum_{k=0}^{M} C_{2 k} J_{2 k}(z) Q_{2 k}(w) P(t) \tag{8}
\end{equation*}
$$

where $w=\frac{i L}{R}$ and $z=R \Delta t$.
Asymptotically the Bessel function behaves as

$$
\begin{equation*}
J_{k}(z) \approx \frac{1}{k!}\left(\frac{z}{2}\right)^{k} \approx \frac{1}{\sqrt{2 \pi k}}\left(\frac{e z}{2 k}\right)^{k} \tag{9}
\end{equation*}
$$

for $k \longrightarrow \infty$, hence for $k \gg R \Delta t$ the Bessel function decay exponentially and the series can be truncated with negligible error.

Finite difference solution - special case of REM

Considering only the terms in $(w z)^{n}$ for $n=0,2,4 \cdot$, we obtain:

$$
\begin{align*}
P(t+\Delta t)+P(t-\Delta t) & =2\left(1+\frac{z^{2}}{2} w^{2}+\frac{z^{4}}{24} w^{4}+\frac{z^{6}}{720} w^{6}\right. \\
& \left.+\frac{z^{8}}{40320} w^{8}+\cdots\right) P(t) \tag{10}
\end{align*}
$$

Now, considering only the terms up to Δt^{2}, and substituting w by $\frac{i L}{R}$ and $z=R \Delta t$, we get:

Second-order finite difference in time scheme.

$$
\begin{equation*}
P(t+\Delta t)-2 P(t)+P(t-\Delta t)=-\Delta t^{2} L^{2} P(t) \tag{11}
\end{equation*}
$$

Finite difference solution - special case of REM

In the same way, for the 4th order approximation we have:
$\frac{1}{\Delta t^{2}}\left[P(t+\Delta t)-2 P(t)+P(t-\Delta t)-\frac{\Delta t^{4}}{12} L^{4} P(t)\right]=-L^{2} p(t)$
Then,

$$
\begin{equation*}
-L^{4} P(t)=L^{2} \frac{\partial^{2} P}{\partial t^{2}}=-\frac{\partial^{2}}{\partial t^{2}}\left(-L^{2} P\right)=-\frac{\partial^{4} P}{\partial t^{4}} \tag{13}
\end{equation*}
$$

So the L^{4} operator term has been replaced by $\partial^{4} / \partial t^{4}$.
Thus, REM is also a Lax-Wendroff scheme - higher-order time derivatives are replaced by spatial derivatives

Two coupled first order wave equation

The acoustic wave equation:

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{\partial^{2} P}{\partial t^{2}}=\frac{\partial^{2} P}{\partial x^{2}}+\frac{\partial^{2} P}{\partial z^{2}} \tag{14}
\end{equation*}
$$

Setting $Q=\partial_{t} P$,
Two coupled first order equation

$$
\frac{\partial}{\partial t}\binom{P}{Q}=\left(\begin{array}{cc}
0 & 1 \tag{15}\\
c^{2} \nabla^{2} & 0
\end{array}\right)\binom{P}{Q}
$$

A compact notation

$$
\begin{equation*}
\frac{\partial V}{\partial t}=G V \tag{16}
\end{equation*}
$$

where $V=\binom{P}{Q}$ and $G=\left(\begin{array}{cc}0 & 1 \\ c^{2} \nabla^{2} & 0\end{array}\right)$

First order differential wave equation

The pressure wavefield \hat{P} is a complex wavefield defined as (Zhang and Zhang, 2009)

$$
\begin{equation*}
\hat{P}(x, z, t)=P(x, z, t)+i H[P(x, z, t)] \tag{17}
\end{equation*}
$$

where $H[\cdot]$ is the Hilbert transform operator.
The complex pressure wavefield \hat{P} satisfies the following first-order partial equation in the time direction

$$
\begin{equation*}
\frac{\partial \hat{P}}{\partial t}=\Phi \hat{P} \tag{18}
\end{equation*}
$$

where Φ is a pseudodifferential operator and is represented by

$$
\begin{equation*}
\phi=i c(x, z) \sqrt{k_{x}^{2}+k_{z}^{2}} \tag{19}
\end{equation*}
$$

Chebyshev polynomials

Let's introduce the Chebyshev polynomials

$$
\begin{equation*}
T_{n}(x)=\cos (n \theta), \quad \text { where } \quad x=\cos \theta \tag{20}
\end{equation*}
$$

The trigonometric recursion

$$
2 \cos (\theta) \cos (n \theta)=\cos ((n+1) \theta)+\cos ((n-1) \theta)
$$

implies the recursion

$$
\begin{equation*}
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) \tag{21}
\end{equation*}
$$

with $T_{0}=1$ and $T_{1}(x)=x$
The modified Chebyshev polynomials satisfy the recurrence

$$
\begin{equation*}
Q_{n+1}(x)=2 x Q_{n}(x)+Q_{n-1}(x) \tag{22}
\end{equation*}
$$

where $Q_{n}(x)=i^{n} T_{n}(-i x)$; Again, the recursion is initiated by: $Q_{0}(x)=1$ and $Q_{1}(x)=x$

Finite difference and Chebyshev polynomials

Centered finite difference scheme:

$$
\begin{equation*}
\frac{\partial \hat{P}^{n}}{\partial t}=\frac{\hat{P}^{n+1}-\hat{P}^{n-1}}{2 \Delta t} \tag{23}
\end{equation*}
$$

We have:

$$
\frac{\partial \hat{P}}{\partial t}=\Phi \hat{P} \quad \Longrightarrow \quad \hat{P}_{n+1}=2 \Delta t \Phi \hat{P}_{n}+\hat{P}_{n-1}
$$

Comparing with the Chebyshev polynomial recursion

$$
Q_{n+1}(x)=2 x Q_{n}(x)+Q_{n-1}(x)
$$

we notice that

$$
\begin{equation*}
\hat{P}_{n+1}=Q_{n+1}(\Delta t \Phi) \hat{P}_{0} \quad \text { for } \quad n=1,2, \cdots \tag{24}
\end{equation*}
$$

In this way, the finite difference wavefields are just the Chebyshev polynomials in $\Delta t \Phi$ acting on the initial (injected source) wavefield \hat{P}_{0}.

Finite difference and Chebyshev polynomials

Since $Q_{n}(x)$ is bounded on $(-1,1)$ for all $n \geq 0$ and unbounded for any x not belonging to $(-1,1)$. The finite-difference scheme is stable if and only if

$$
\Delta t<\frac{1}{R}
$$

where R , for the 2D case, is given by

$$
\begin{equation*}
R=\pi c_{\max } \sqrt{\left(\frac{1}{d x}\right)^{2}+\left(\frac{1}{d z}\right)^{2}} \tag{25}
\end{equation*}
$$

If $\Delta x=\Delta z$, the stability limit is given by:

$$
\alpha=\frac{c_{\max } \Delta t}{\Delta x}<0.2
$$

which is the stability condition for the pseudospectral method as recommended by Kosloff and Baysal (1982).

Laplacian computation

Laplacian operator - 2D case

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

We can use the Fourier space for evaluating the Laplacian - using forward and inverse discrete Fourier transforms (DFT), as:

$$
\nabla^{2} P=D F T^{-1}\left[-\|\vec{k}\|^{2} \operatorname{DFT}(P)\right]
$$

where $\vec{k}=\left(k_{x}, k_{z}\right)$ is the 2 D wave number vector.

Impulse response - two layer model wavefield snapshot at $t=1.26 \mathrm{~ms}$

Impulse response for the two layer model based on the solution of:
Coupled wave equation system (left); First-order wave equation; (right)

$$
\begin{gathered}
\text { Impulse response - two layer model } \\
\text { wavefield snapshot at } t=1.26 \mathrm{~ms}
\end{gathered}
$$

Impulse response for the two layer model based on the solution of: Modified Chebyshev polynomials (left); The REM (right)

Impulse response for the BP salt model

Coupled wave equation system; (top left); First-order wave equation; (top right); Modified Chebyshev polynomials (bottom left); and the REM (bottom right)

Conclusions

- The coupled wave equation system finite difference approximation in time follows exactly the recursion of the modified Chebyshev polynomials in $\mathbf{A} \Delta t$.
- We have shown the same connection with the solution of the first-order wave equation by finite differences, but with the Chebyshev polynomials in $\Phi \Delta t$ where Φ is a pseudodifferential operator.
- The modified Chebyshev polynomials in the REM has the same connection with the finite difference method of the full wave equation using a second order time-difference approximation.

Conclusions

- We have also derived the stability condition of these method exploring the range of validity of the Chebyshev polynomials.
- FD methods through numerical examples with the Chebyshev polynomial recursion can be used to generate the propagation of seismic waves which are free of numerical dispersion and unconditionally stable.

Acknowledgments

- This research was supported by CNPq and INCT-GP/CNPq.
- The facility support from CPGG/UFBA is also acknowledged.

Modified chebyshev polynomials result wavefield snapshot at $t=2.9 \mathrm{~s}$

Back

$\Delta t=1.29 \mathrm{~ms}$ (only the even terms); $f_{\max }=30 \mathrm{~Hz}$.

Rapid expansiom method (REM) result wavefield snapshot at $t=2.9 \mathrm{~s}$

Back

Using a time stepping 7 times larger than the other three methods;

Chebyshev polynomial Q_{200}

Chebyshev polynomial Q_{400}

- Back

Chebyshev polynomial Q_{600}

Chebyshev polynomial Q_{800}

Snapshot of the wavefield at 1.0 s

- Back

Snapshot of the wavefield at 1.2 s

Back

Snapshot of the wavefield at 1.4 s

Snapshot of the wavefield at 1.6 s

Back

